结巴分词及其使用

分词模式

  • 精确模式:精确切开句子,适合文本分析;
  • 全模式:把句子中可扫描的句子都扫出来,速度很快,但不能解决歧义;
  • 搜索引擎模式:在精确模式上对长词再切分,适合搜索引擎分词; example:
1
2
3
4
5
6
7
8
9
10
11
12
import jieba
seg_list = jieba.cut("我来自北京清华大学",cut_all=True)
print("Full Mode:" + "/" ".join(seg_list)")

seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
print("Default Mode:" + "/".join(seg_list))

seg_list = jieba.cut("他来到了网易杭研大厦")
print(", ".join(seg_list))

seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造")
print(", ".join(seg_list))

output:

1
2
3
4
5
6
7
【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学

【精确模式】: 我/ 来到/ 北京/ 清华大学

【新词识别】:他, 来到, 了, 网易, 杭研, 大厦 (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了)

【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造

分词语法

  • jieba.cut 方法接受三个输入参数: 需要分词的字符串;cut_all 参数用来控制是否采用全模式;HMM 参数用来控制是否使用 HMM 模型
  • jieba.cut_for_search 方法接受两个参数:需要分词的字符串;是否使用 HMM 模型。该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细
    待分词的字符串可以是 unicode 或 UTF-8 字符串、GBK 字符串。注意:不建议直接输入 GBK 字符串,可能无法预料地错误解码成 UTF-8
  • jieba.cut以及 jieba.cut_for_search 返回的结构都是一个可迭代的 generator,可以使用 for 循环来获得分词后得到的每一个词语(unicode),或者用
  • jieba.lcut 以及jieba.lcut_for_search 直接返回 list
  • jieba.Tokenizer(dictionary=DEFAULT_DICT) 新建自定义分词器,可用于同时使用不同词典。jieba.dt 为默认分词器,所有全局分词相关函数都是该分词器的映射。

算法

  • 基于前缀词典实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图 (DAG)

    有向无环图:如果一个有向图从任意顶点出发无法经过若干条边回到该点,则这个图是一个有向无环图(DAG图)。

  • 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合
  • 对于未登录词,采用了基于汉字成词能力的 HMM 模型,使用了 Viterbi 算法

    viterbi:动态规划算法。它用于寻找最有可能产生观测事件序列的维特比路径——隐含状态序列.

基于TF-IDF 算法的关键词抽取

import jieba.analyse

jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=())

sentence 为待提取的文本
topK 为返回几个 TF/IDF 权重最大的关键词,默认值为 20
withWeight 为是否一并返回关键词权重值,默认值为 False
allowPOS 仅包括指定词性的词,默认值为空,即不筛选

原文链接

拿钱去买猫粮和狗粮嗷 ~